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We study the interplay between disorder and superconductivity in a rope of metallic carbon nanotubes.
Based on the time-dependent Ginzburg-Landau theory, we derive the superconducting transition temperature Tc

taking into account the critical superconducting fluctuations which are expected to be substantially strong in
such low-dimensional systems. Our results indicate that, contrary to what is expected, Tc increases by increas-
ing the amount of disorder. We argue that this behavior is due to the dynamics of the tubes which reduces the
drastic effect of the local disorder on superconductivity by enhancing the intertube Josephson tunneling. We
also found that Tc is enhanced as the effective dimensionality of the rope increases by increasing the number
N of the tubes forming the rope. However, Tc tends to saturate for large values of N, expressing the establish-
ment of a bulk three-dimensional superconducting order.
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I. INTRODUCTION

Since their discovery in 1991,1 carbon nanotubes �CNT�
have been studied under close scrutiny due to their eye-
catching properties which are of a great interest not only for
nanotechnology but also for fundamental physics. A carbon
nanotube, which can be regarded as a tiny cylinder rolled up
from a graphene sheet, is a good candidate to study elec-
tronic properties in one-dimensional �1D� systems where
electron-electron interactions are substantially important.

CNT can be synthesized as a single-walled tube �SWNT�
or multiwalled tubes �MWNT� consisting of two or more
concentric shells. SWNT can also be assembled to form
ropes of ordered parallel tubes arranged in a triangular
lattice.2–4 The nanotubes, which are nearly of the same di-
ameter, can have different kind of helicities but in general 1

3
of them are metallic.5,6

The transport properties of the rope is found to be
strongly dependent on the amount of disorder within the
tubes.7,8 It has been reported that the intertube electronic
transfer is enhanced in the presence of disorder, leading to a
charge-carrier delocalization.9 This feature raises the ques-
tion whether such disorder-induced intertube coupling can be
observed for the superconducting order in ropes of CNT?

The first superconducting signature was observed, in
1998, as a proximity effect in isolated metallic bundled
SWNT connected to superconducting leads.10,11 Later on, in-
trinsic superconductivity has been reported in ropes of CNT
with a transition temperature Tc=0.55 K.6,12,13 Ferrier et al.6

studied the dependence of the superconducting transition
temperature on the number of the metallic tubes included in
the rope and on the amount of disorder. They found that
superconductivity arises only in ropes with more than 100
tubes. However, the most striking result of Ref. 6 is that
disorder, contrary to what is expected, may induce supercon-
ductivity: the larger the amount of disorder, the stronger the
superconducting correlations. Nevertheless, at a very large
disorder amplitude, the superconducting order collapses as in
other superconducting materials.

Superconductivity at Tc=15 K has been also reported in
zeolite-inserted SWNT of small diameter �0.4 nm�.14 Takisue

et al.15 found a superconducting transition at Tc�12 K in
MWNT encapsulated in zeolites. These relatively high criti-
cal temperatures put the question on the origin of supercon-
ductivity in SWNT. How can a superconducting order de-
velop in such low-dimensional systems where thermal
fluctuations are expected to destroy any long-range ordered
state? The surprising observation of superconductivity in
CNT has stimulated many theoretical studies to find out the
underlying mechanism.

The realization of a superconducting order in ropes of
CNT has been ascribed by Gonzalez16 to the presence of
strong attractive electron-electron interactions mediated by
phonon exchange. The latter prevails over repulsive Cou-
lomb interaction in ropes with hundred or more of metallic
nanotubes.

Other models based on phonon-mediated attractive
mechanisms have been also proposed.5,17,18 In particular, the
dependence of the superconducting transition temperature on
the number of tubes was quite understood in the framework
of the model elaborated by Egger and De Martino5,18 who
introduced the Josephson couplings between the tubes and
the phase fluctuations of the superconducting order param-
eter. However, a pronounced discrepancy with the experi-
mental data emerges with decreasing the number of the tubes
embedded in the rope.19,20

To explain the relatively high superconducting critical
temperature reported in SWNT, Sasaki et al.21 have proposed
a new mechanism where superconductivity originates from
the edge states specific to graphene. The authors argued that
superconductivity is due to a superconductor/normal/
superconductor junction where the superconducting phase is
realized at the ends of the SWNT while the bulk part of the
tube remains metallic.

An other scenario has been proposed by Zhang et al.22 to
account for the occurrence of superconductivity in SWNT
connected to superconducting or normal electrodes. The au-
thors argued that the SWNT becomes superconducting in the
range of 11–30K due to the presence of van Hove singulari-
ties in the electron density of states of the nanotube.

Karnaukhov and Diks23 ruled out the electron-phonon in-
teraction mechanism to explain the formation of the super-
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conducting state in SWNT due to the relatively large value of
the critical temperature. The authors suggested an alternative
attractive electron-electron interaction originating from
strong hybridized interaction induced by the two-band elec-
tron structure of SWNT.

Recently, Belluci et al.24 have theoretically argued that
superconductivity can arise by a purely electronic mecha-
nism in ultrasmall diameter SWNT and end-bonded multi-
walled ones due to the screening of the forward-scattering
processes. More recently, Le Hur et al.25 have derived a the-
oretical model to study the possibility of a superconducting
proximity effect in metallic SWNT in the presence of super-
conducting substrate. The authors showed that the latter in-
duce an unconventional double superconducting gap in the
tube.

The outcome of the above-mentioned studies is that the
origin of superconductivity in CNT-based systems is still un-
der debate and many relative issues are not yet totally un-
veiled. In particular, the role of disorder on the stability of
the superconducting phase has not been addressed in previ-
ous theoretical studies.20 This is a key point which may shed
light on the formation of the superconducting phase in low-
dimensional systems.

In this paper, we theoretically investigate the effect of
disorder on the superconducting state in a rope of CNT. The
model is based on the time-dependent Ginzburg-Landau
�TDGL� theory taking into account the superconducting fluc-
tuations which are substantially important in CNT regarding
their low dimensionality. Ferrier et al.19,26 have actually ob-
served, in ropes of CNT, a large domain of superconducting
fluctuations which extends to 1 K, namely, twice the transi-
tion temperature �Tc=0.5 K�. In the following we present
our model and discuss the obtained results in Sec. III. Sec-
tion IV is devoted to the concluding remarks.

II. MODEL

We consider a rope of identical SWNT arranged in a tri-
angular lattice characterized by the basis �a� ,b��. For simplic-
ity we assume that all the tubes are metallic while experi-
mentally 2

3 , on average, are semiconductors. This assumption
dœs not affect the outcomes of the present model which de-
pends basically on the amount of disorder in the rope and on
the intertube Josephson couplings. From the numerical point
of view, one should expect that our calculated superconduct-
ing critical temperatures may be somewhat overestimated
compared to the experimental ones since we considered that
all the neighboring tubes of a given one are metallic. For a
more realistic description, we can consider a random distri-
bution of the tubes with different helicities and diameters.
Such complication is, actually, irrelevant for the physics of
superconductivity in ropes of CNT since the nature of elec-
tronic transport is essentially sensitive to the transverse cou-
pling between the tubes which depends on the intratube
disorder.9

The superconducting order is stabilized in the rope via
Cooper-pair tunneling between tubes and inside a single
tube. We denote by J1 and J2 the Josephson coupling param-
eters across the rope, respectively, to the first and to the

second neighboring tubes. We assume that the superconduct-
ing phase inside a tube is inhomogeneous with superconduct-
ing domains separated by metallic regions. This inhomoge-
neous structure, which may arise in the presence of
impurities, is consistent with the absence of a bulk supercon-
ductivity in SWNT.21 The superconducting domains along
the tube �z axis� are coupled by Josephson tunneling param-
eterized by J0.

Regarding the strong superconducting fluctuations which
extend on a large temperature range around the critical tem-
perature Tc, the mean-field theory breaks down and one
should expect clear deviation from the mean-field critical
temperature T0. These fluctuations can be treated in the
frame of the TDGL theory which has proven to be a reliable
tool to study the critical transition region including supercon-
ducting fluctuations in different systems such as high Tc
�Ref. 27� and low-dimensional organic superconductors.28

We start by writing the superconducting free energy Fs of
the rope compared to that of the normal state Fnorm,

F = Fs − Fnorm = �
i,j,n
�

r1

r2

dx�
r1

r2

dy�
0

l01

dz�a��n,i,j�2

+
�2

2m�
��� �n,i,j�2 + J0��n,i,j − �n+1,i,j�2 + J1��n,i,j − ��nij	�2

+ J2��n,i,j − ���n,i,j		�2 +
b

2
��n,i,j�4
 , �1�

where i and j denote the tube coordinates in the triangular
basis �a� ,b�� whereas n indicates the position of the supercon-
ducting domain along the tube direction z. �nij is the super-
conducting order parameter and � 	 and �� 		 correspond to
the first and second neighboring tubes. The coefficients a and
b are given by: a=a0� and b=�0�2e0

2�2 /2m2, where a0
=�2 /2m�0

2, �0 being the superconducting coherence length,
and �=ln�T /T0� while �=

��

��
is the GL parameter. Here �� and

�� are, respectively, the London penetration depth and the
coherence length in the �a� ,b�� plane transverse to the tube
direction. We take for simplicity �0=��. The Cooper pair is
characterized by its electric charge e0=2e and its effective
mass m=2me, where e is the unit charge and me is the elec-
tron mass.

The superconducting order is assumed to develop inside a
tube over a thickness r2−r1 from the surface. The length of
the superconducting domain is denoted as l01.

The Josephson parameters are written as

J0 =
�2

2m�l02
2 exp�−

le

L
, J1 =

�2

2m�l1
2exp�−

le

D
,

and J2 =
�2

2m�l2
2exp�−

le

D
 , �2�

where m� is the effective pair mass in the superconducting
domain whereas le is the mean-free path along the tube. L
and D are, respectively, the length and the diameter of the
rope. We assume for simplicity that all the tubes have the
same diameter. l1 �l2� denotes the intertube distance, from the
tube surface, between first �second� neighboring tubes while
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l02 is the distance between superconducting domains inside a
single tube.

The natural question which arises concerns the origin of
these Josephson coupling expressions. The major issue re-
gards the exponential terms which lead to an enhancement of
the Josephson tunneling by increasing the amount of disor-
der, namely, by decreasing the mean-free path.

This idea is based on previous studies dealing with Jo-
sephson coupled arrays of n-leg spin ladders29 and correlated
stripes in cuprate superconductors30 which show clear evi-
dence of the drastic effect of disorder on the superconducting
state. Kivelson et al.30 have argued that the Josephson cou-
pling between stripes is strongly enhanced by the transverse
stripe fluctuations, which promotes the superconducting or-
der. These fluctuations bring neighboring stripes close to-
gether leading to the enhancement of the mean value of the
Josephson coupling.

Orgad29 has shown that such geometrical fluctuations in
coupled ladder systems can reduce the suppression of the
superconducting correlations due to disorder by increasing
the Josephson tunneling between ladders. The dynamic of
the ladders reduces the effective disorder strength and make
the superconducting pairing more robust against disorder.
The interladder Josephson coupling is found to increase ex-
ponentially with the square of the fluctuation amplitude,
which enhances the superconducting transition temperature.
Orgad29 considered a Josephson tunneling amplitude depend-
ing on the interladder distance as Jij �J0 exp�−�s+ui
−uj� /	�, where ui and uj are the deviation of the ith and the
jth ladders from their static position, s is the mean distance
of the ladder array, and 	 is a characteristic constant.29

The basic idea highlighted in Refs. 29 and 30 is that the
interplay between disorder and the dynamics of the stripes or
the ladders is substantial for the stability of the supercon-
ducting order in cuprates and spin-ladder superconductors.

Keeping this result in mind, let us now return to the rope
of CNT. The latter can be described, as proposed by Ferrier
et al.9 by an array of 1D atomic chains lying on a cylinder
where each chain corresponds to a SWNT. The hopping pro-
cesses along the chain are randomly distributed around a
mean value t� with a square distribution 
t�. Such bond dis-
order along the chain may be induced by the dynamics of the
tube as in the case of arrays of spin ladder or stripes. This
leads to a competition between the geometrical fluctuations
of the SWNT and the local disorder inside the tubes.

By analogy with Ref. 29, the Josephson tunneling
between tubes can be written as J� exp�−dij /	�, where dij
is the separation distance between the ith and the jth tubes.
The exponential term expresses the Cooper-pair tunneling
probability which can be averaged over the tubes as �P�	
=exp�−�d�	 /	�, where �d�	 is an average distance between
the tubes.

In diffusive superconductors, one should expect a depen-
dence of the Josephson couplings on the mean-free path
since the superconducting coherence length is governed by

the disorder amount and reads as �c=��vFle

� , where � is the
superconducting gap and vF is the Fermi velocity.31 A key
question raises at this point concerning the relationship be-
tween �d�	 and the intratube mean-free path le, which we try
to answer in the following.

The plane transverse to the rope direction can be regarded
as a dirty two-dimensional �2D� superconductor of a mesos-
copic size where the disorder points, due to defects or impu-
rities, are localized inside the tubes. In this plane, the tube
sections form a sort of disordered clusters embedded in a free
disorder medium. The average distance �d�	 between these
clusters is controlled by the dynamic of the tube which is
strongly dependent on the disorder amount inside the tubes.
In the diffusive regime, the bond disorder due to the geo-
metrical fluctuations of the tubes gives rise to an increasing
intertube one-particle hopping integral with increasing the
site-disorder amplitude originating from impurities and de-
fects inside the tube.9 This means that the intertube distance
�d�	 decreases with decreasing the intratube mean-free path
le. �d�	 is then expected to have the same behavior as le and
may be expressed as a growing function of le. We do not
claim that the present model provides the exact form of this
function. A more detailed analysis based on a microscopic
study is needed.

Since �d�	, as le, is a free parameter in our model, we set
for simplicity �d�	= le. This means that, in the diffusive re-
gime, the mean-free path inside the tube and across the rope
are of the same order. This is justified as far as le is smaller
than the rope diameter D to keep the transverse one-particle
transport in the diffusive regime. Actually, this approxima-
tion does not affect the overall outcomes of our model but
may yield to somewhat larger superconducting critical tem-
peratures compared to the experimental ones.

To characterize the electronic transport in disordered me-
soscopic systems, one need to compare the size of the sys-
tem, which is the rope diameter in this case, to a character-
istic mean-free path. Regarding its dependence on the
intratube disorder amplitude, �d�	 seems to be a good param-
eter to account for the transport regime across the rope. It
comes out that �d�	 and the rope diameter D, which depends
on the tube number N, are the key parameters for the one-
particle transport and for the Cooper-pair tunneling across
the rope in the diffusive regime. The tunneling probability
can then be written as �P�	=exp�−�d�	 /	�=exp�−le /D�,
where the 	 constant, which accounts for the environment
between the tubes, is replaced by rope diameter D. This is
made possible since the tube environment is disorder free
and depends only on the tube number included in the expres-
sion of the rope diameter D.

In the absence of site disorder and geometrical fluctua-
tions, namely, in a pure static rope, the Josephson couplings
between, respectively, the first and the second neighboring
tubes write as

J1 =
�2

2m�l1
2 and J2 =

�2

2m�l2
2 . �3�

Such couplings cannot describe the superconducting order in
the rope since they are independent on the rope characteris-
tics particularly the tube number.

In the presence of disorder and geometrical fluctuations of
the tubes, the Josephson parameters J1 and J2 given by Eq.
�3� should be changed to account for the average pair tun-
neling probability across the rope �P�	=exp�−le /D�, which
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gives rise to the expressions introduced in Eq. �2�.
Regarding the intratube Josephson tunneling J0, one can

define an average pair hopping probability along the tube
�P�	=exp�−le /L� resulting from the geometrical fluctuations
of the tube which yields to the expression given by Eq. �2�.

It is worth noting that the J0 term is irrelevant for the
stability of the superconducting phase as we will show in the
next. It comes out that the dynamics of the tubes in the rope
mitigate the drastic effect of the local disorder on the super-
conducting order by enhancing the Josephson tunneling am-
plitudes between the tubes. The latter increase as a function
of the effective disorder. This is reminiscent of the disorder-
induced electronic transverse delocalization in ropes of CNT
proposed by Ferrier et al.9 We suggest that this delocalization
scenario holds for Cooper pair due to the tube dynamics as
argued above.

Let us now turn to the superconducting order parameter
whose critical dynamics satisfy the TDGL equation

0
−1��nij

�t
= −

�F

��nij
� + �nij�r�,t� . �4�

Here 0
−1=��3 /16m��

2kBT is the relaxation rate of the order
parameter whereas �nij�r� , t� are the Langevin forces describ-
ing the thermodynamical fluctuations and which obey the
Gaussian white-noise law27

��nij�r�,t��n�i�j�
� �r��,t��	 = 20

−1kBT
�r� − r���
�t − t��

with r�= �X+ id ,Y + jd ,Z+nl0� and r��= �X+ i�d ,Y + j�d ,Z
+n�l0�, where d= l1+d0 and l0= l01+ l02, d0 being the tube
diameter. X, Y, and Z are the coordinates of a point belonging
to a superconducting domain of a SWNT of length l01, along
the z direction, and of a thickness r2−r1.

By taking the derivative of the free energy �Eq. �1�� with
respect to �nij

� , the TDGL equation becomes

�nij�r�,t� = 0
−1��n,i,j

�t
+ a�n,i,j −

�2

2m�
��n,i,j + b���n,i,j

2 �	�n,i,j

+ 6J1�n,i,j − J1��n,i+1,j + �n,i−1,j + �n,i,j+1 + �n,i,j−1

+ �n,i+1,j−1 + �n,i−1,j+1� + J2�6�n,i,j − �n,i+2,j−1

− �n,i−2,j+1 − �n,i+1,j+1 − �n,i−1,j−1� − J2��n,i+1,j−2

+ �n,i−1,j+2� + J0�2�n,i,j − �n+1,i,j − �n−1,i,j� , �5�

where we adopted the Hartree approximation for the quartic
term as in Ref. 27, which results in replacing the term
b��nij�2�nij by b���nij�2	�nij. This approximation leads to a
linear problem with a reduced temperature:

�̃ = � +
b

a
���nij�2	 , �6�

which is determined self-consistently together with ���nij�2	.
The superconducting critical temperature is defined as �̃�T
=Tc�=0.27

To solve this equation, we introduce the Fourier transform
of �nij as

�nij�r�,t� =� d3k�

�2��3��k�,t�e−ik�.r�,

where

��k�,t� = �
nij
�

X1

X2

dX�
Y1

Y2

dY�
0

l01

dZ � �nij�X + id,Y

+ jd,Z + nl0,t�e�X+id�kxe�Y+jd�kye�Z+nl0�kz,

where X1 and X2 �Y1 and Y2� are the limiting values for X �Y�
in a superconducting domain in the �a ,b� plane.

Taking the Fourier transform of Eq. �5�, we obtain

��k�,t� = �0
−1 �

�t
+

�2k2

2m�
+ ã + 2J0�1 − cos�kzl0��

+ 2J1�3 − cos�dkx� − cos�dky� − cos�d�kx − ky���

+ 2J2�3 − cos�d�2kx − ky�� − cos�d�kx + ky��

− cos�d�kx − 2ky������k�,t� , �7�

with ã=a+b���nij�2	 and the correlation relation satisfied by
��k� , t�,

���k�,t����k��,t��	 = 20
−1kBT�2��3
�k� − k���
�t − t�� .

Equation �7� can be solved using the Green’s function
method proposed by Puica and Lang27 for layered supercon-
ductors. We define the Green’s function R�k� , t ,kz� , t�� through
the relation

�0
−1 �

�t
+

�2kz
2

2m�
+ 2J0�1 − cos�kzl0�� + a1� � R�k�,t,kz�,t��

= 
�kz − kz��
�t − t�� , �8�

where

a1 = ã +
�2�kx

2 + ky
2�

2m�
+ 2J1�3 − cos�dkx� − cos�dky�

− cos�d�kx − ky��� + 2J2�3 − cos�d�2kx − ky��

− cos�d�kx + ky�� − cos�d�kx − 2ky��� . �9�

We also introduce the Fourier transform of R�k� , t ,kz� , t�� with
respect to time as

R�k�,�,kz�,t�� =� dtR�k�,t,kz�,t��e
i��t−t��, �10�

which can be deduced from Eq. �8� as

R�k�,�,kz�,t�� = 
�kz − kz�� � �− i�0
−1 +

�2kz
2

2m�

+ 2J0�1 − cos�kzl0�� + a1�−1

. �11�

��k� , t� solution of Eq. �7� can be expressed in terms of the
Green’s function R�k� , t ,kz� , t�� as27
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��k�,t� =� dt�� dkz�R�k�,t,kz�,t����kx,ky,kz�,t�� .

Given Eq. �11�, we obtain

��k�,t� = �
0

�

d���k�,t − ��� d�ei�� � �− i�0
−1

+
�2kz

2

2m�
+ 2J0�1 − cos�kzl0�� + a1�−1

�12�

with �= t− t� and the following correlation relation

���k�,t����k��,t�	�
�k� − k��� . �13�

To solve Eq. �6�, one need to derive ���nij�2	 which, regarding
Eq. �13�, can be simply written as

���nij�2	 = 4�0
−1kBT� d�� d3k� � ���0

−1�2

+ ��2kz
2

2m�
+ 2J0�1 − cos�kzl0�� + a1�2�−1

.

�14�

The critical temperature can now be deduced from Eq. �6�
by setting �̃�T=Tc�=0, which yields to Eq. �A1� given in the
Appendix. In the next section we discuss the numerical re-
sults.

III. RESULTS AND DISCUSSION

We have solved numerically Eq. �A1� and the results are
depicted in Fig. 1 which shows the superconducting transi-
tion temperature Tc as a function of the number N of the
tubes forming the rope. It is worth noting that N is involved
in the rope diameter D as D=�N�d0+e�, where d0 and e are,

respectively, the tube diameter and the intertube distance.13

As shown in Fig. 1, Tc is strongly enhanced by increasing
N but this enhancement is slowed down for N larger than 100
with a tendency to saturation, which is reminiscent of the
experimental results.5,26 This behavior reflects the dimen-
sionality of the superconducting phase appearing in the rope.
By increasing N, the three-dimensional �3D� character of the
superconducting state is enhanced and Tc likewise. However,
for a larger N �N�200�, the rope can be regarded as a 3D
system and a further increase in N is irrelevant for the super-
conducting order, which explains the saturation behavior of
Tc at large N.

A question worth noting concerns the interplay between
superconductivity and the 1D character of a SWNT. Could
superconductivity prevail over the low dimensionality of
such systems? This turns out to consider only the J0 term in
our model. In such case, numerical calculations show that Tc
is at most of the order of 1 mK, which explains the difficulty
to observe an intrinsic superconductivity in SWNT as re-
ported in Refs. 9 and 19. The superconducting phase can,
actually, develop in ropes containing about one hundred me-
tallic tubes as shown by earlier studies.16,18 The limiting
tubes number in our model is then N=13 if one include the
first and second neighbors of a given tube.

In Fig. 2, we give, for different tube numbers, the depen-
dence of Tc on the inverse of the mean-free path which mim-
ics the amount of local disorder inside the tube. Peculiarly,
Fig. 2 shows that disorder promotes the superconducting or-
der as found experimentally.9,19 This behavior is due to the
intertube disorder-induced delocalization of the Cooper
pairs. Actually, the intertube pair delocalization is expected
to develop in the electronic diffusive regime, where disorder
can induce transverse hopping processes across the rope.9

It is worth noting that the values of the critical tempera-
ture reported in Figs. 1 and 2 may be somewhat overesti-
mated since we have considered that all the tubes are metal-
lic. In a more realistic model, one should take, on average,
for each tube two neighboring metallic tubes since, in most

0 50 100 150 200

N ( tube number)

T
c

(K
)

0.8

0.6

0.4

0.2

FIG. 1. Superconducting transition temperature as a function of
the number N of tubes. The calculations are done in the one-particle
delocalized regime and for �=0.6 �m, �0=0.1 �m, and L
=1.4 �m �Ref. 19�. � and �0 are, respectively, the penetration depth
and the coherence length in the superconducting domain while L is
the rope length.

10
-3

L/le

T
c(K

)

N = 30
N = 70
N = 180

0.8

0.7

0.6

0.5
0.5 1 1.5 20

FIG. 2. Superconducting transition temperature as a function of
the inverse of the mean-free path in a rope of SWNT for different
tube numbers. The calculations are done in the one-particle delocal-
ized regime and for the same data as in Fig. 1.
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cases, 1
3 of the tubes within a rope are metallic.

By the way, one should emphasize the role of the Joseph-
son tunneling J2 between second neighboring tubes on the
superconducting order. Numerical results show that Tc is re-
duced by 20% if J2 is neglected. Actually, the second neigh-
boring tubes should be involved in the tunneling processes
since they are in the same range of reach as the first
neighbors.20 This is due to the geometry of the rope charac-
terized by a tube diameter of 3 nm and an intertube distance
of 0.35 nm.

A question worth stressing regards the saturation behavior
of Tc at large disorder amplitude in Fig. 2. This feature,
which is due to the expression of the intertube couplings
given by Eq. �2�, does not sound in agreement with the ex-
perimental data which rather show a collapse of the super-
conducting phase at large enough amount of disorder.13,26

This discrepancy originates from the nature of the electronic
transport regime. Our results are derived within the delocal-
ized diffusive regime characterized by a disorder-induced
transverse electronic hopping.9 However, in the large disor-
der range, a localized regime develops where the electrons
are confined within individual tubes. The Josephson cou-
plings given by Eq. �2� are no more reliable since, in this
case, the intratube disorder overcomes the geometrical fluc-
tuations of the tubes, leading to the suppression of the inter-
tube pair tunneling. The latter is expected to be strongly
reduced by the electron localization which can be roughly
described by an exp�– L

� � behavior for the intertube electron
hopping, where L is the rope length and �=2Nle is the local-
ization length.9 N and le being the number of metallic tubes
and the mean-free path inside the tube. As a consequence,
one can assume the following Josephson couplings

J1 =
�2

2m�l1
2exp�−

L

�
 and J2 =

�2

2m�l2
2exp�−

L

�
 ,

�15�

which express the disorder-induced Cooper-pair localization
as a result of the electronic localization.

Figure 3 shows the superconducting transition tempera-
ture Tc as a function of the inverse of the mean-free path le
which is a measure of the disorder amplitude. The calcula-
tions are done using Eq. �15�. In this regime of localization,
Tc is reduced by increasing disorder due to the suppression
of the intertube tunneling. However, the tube number N acts,
as in the delocalized regime, to the benefit of the supercon-
ducting phase. Increasing N furthers the establishment of a
3D electronic transport regime by increasing the localization
length �. The effect of disorder is significantly important in
ropes with a small tubes number where the 1D character
prevails over the formation of a 3D superconducting order.

The superconducting behaviors in the delocalized and lo-
calized regimes �Figs. 2 and 3�, are reminiscent of those
obtained in a 2D array of stripes.30 In such systems, the
superconducting transition temperature is found to increase
with the transverse stripe fluctuations up to a critical value
above which it drops. This happens when the system under-
goes a phase transition to an isotropic state where the stripe
structure is lost.

A tough question raised from Figs. 2 and 3 concerns the
extension of the delocalized regime. At which disorder am-
plitude the dynamic of the tubes is frozen and the intertube
Josephson tunnelings start to collapse? A rough estimation
may be deduced from the experimental results of Kasumov
et al.13 showing that the key parameter governing the disor-
der in a suspended rope is the ratio

�c

L , where L and �c are,
respectively, the rope and the coherence lengths. The latter
depends on the mean-free path le as discussed above �c

=��vFle

� .31

In Fig. 4, we have depicted the behavior of superconduct-
ing transition temperature in the localized and delocalized
regimes for a rope of N=70 tubes based on the results shown
in Figs. 2 and 3. According to Fig. 4, the suppression of the
superconducting order starts at a critical value L

lec
=0.2. The

10
-3

L/le

T
c(K

)

N = 30
N = 70

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

FIG. 3. Superconducting transition temperature as a function of
the inverse of the mean-free path in ropes of N=30 and N=70
tubes. Tc is calculated in the localization regime where the Joseph-
son couplings are given by Eq. �15�. The used data are the same as
in Figs. 1 and 2.
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FIG. 4. Superconducting transition temperature as a function of
the inverse of the mean-free path in ropes of N=70 tubes. Regions
�I� and �II� denote, respectively, the delocalized and localized re-
gimes. The calculations are done with the same data as in Fig. 1.
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smaller the tube number, the greater lec, the frailer the super-
conducting order.

The comparison of the numerical values of lec with the
experimental results of Ref. 9 is not obvious. More data are
needed to accurately determine the critical disorder ampli-
tude at which the superconducting transition temperature
reaches its maximum before decreasing. Nevertheless, one
can compare the extent of the disorder regime over which the
superconducting order develops. Let us characterize this dis-
order range by the ratio �=

le1

le2
, where le1 and le2 are, respec-

tively, the mean-free paths corresponding to the appearance
and the collapse of the superconducting phase. According to
the data of Ferrier et al.,9,26 superconductivity appears at
�

�c

L �1= 1
2 and vanishes at �

�c

L �2= 1
10. Assuming that �c��le

�Refs. 9 and 26� and a constant rope length L, gives rise to

�=
�c1

2

�c2
2 =

le1

le2
=25. From Fig. 4, �= 1.6

0.09 �18, where we consider
that Tc=1 mK corresponds to the disappearance of the su-
perconducting phase. This value is quite in agreement with
the experimental one. Moreover, one can estimate from Fig.
4 the range of the disorder-induced superconductivity regime
to which, one may assign a ratio �d=

le1

lec
�2.2, namely, 1

7 of
the total disorder regime over which superconductivity may
be observed. Checking this value requires more experimental
data.

IV. CONCLUDING REMARKS

In summary using TDGL theory, we probed the role of the
effective dimensionality and the amount of disorder on the
stability of the superconducting order in ropes of CNT. We
found that an increase in the dimensionality of the rope,
which is achieved by increasing the tube number N, pro-
motes the establishment of a 3D superconducting phase with
an increasing superconducting critical temperature Tc. How-
ever, for large N values, Tc tends to saturation indicating the
formation of a well-defined 3D superconducting order. The
main result of our work regards the disorder-induced super-
conductivity in the rope which originates from the dynamics
of the tubes. The latter enhance the intertube Josephson tun-
nelings which mitigate the suppression of the superconduct-
ing phase by disorder. However, for larger disorder ampli-
tude, electronic localization prevails against intertube

hopping leading to the suppression of superconductivity as
found in other superconducting materials.
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APPENDIX: SUPERCONDUCTING CRITICAL
TEMPERATURE

By setting �̃�T=Tc�=0 in Eq. �6� we obtain the following
equation giving the superconducting critical temperature

ln
Tc

T0
+ gT�

0

�

sin �d��
0

2�

d��
0

c

k2dk�
0

Wc

dWf�k,�,�,W� = 0.

�A1�

The f�k ,� ,� ,W� is given by

f�k,�,�,W� = �W2 +
�2k2

2m�
+ 2

J0

a0
�1 − cos�kl0 cos ���

+ 2
J1

a0
�3 − cos�kd sin � cos ��

− cos�kd sin � sin ��

− cos�kd sin ��cos � − sin ����

+ 2
J2

a0
�3 − cos�kd sin ��2 cos � − sin ���

− cos�kd sin ��cos � + sin ���

− cos�kd sin ��cos � − 2 sin �����−1

. �A2�

We introduced the dimensionless variable W= ���
8kBT

and we set g=8��0kB�2e0
2��

4, with �=0.6 �m and �� =�0
=0.1 �m.19

We have adopted the no cutoff limit for c and Wc �c
→� and Wc→��, which means that all types of supercon-
ducting fluctuations, even with short wavelengths, are
considered.27
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